Weak Uniform Distribution for Divisor Functions. I

By Francis J. Rayner

Abstract

Narkiewicz (reference [3, pp. 204-205]) has proposed an algorithm for determining the moduli with respect to which a given arithmetic function (of suitable type) has weak uniform distribution. The class of functions to which this algorithm applies includes the divisor functions σ_{i}. The present paper gives an improvement to the algorithm for odd values of i, which makes computation feasible for values of i up to 200. The results of calculations for odd values of i in the range $1 \leq i \leq 199$ are reported.

1. Introduction. Let $\sigma_{i}(x)$ be defined for positive integers i, x by

$$
\sigma_{i}(x)=\sum_{d \mid x} d^{i}
$$

For odd values of i, the functions σ_{i} occur as Fourier coefficients of Eisenstein series.
An arithmetic function f is defined to be weakly uniformly distributed modulo $n($ WUD $(\bmod n)$, for short) if the set

$$
\{x \in \mathbf{Z}: x>0,(f(x), n)=1\}
$$

is infinite and for every pair of integers a_{1}, a_{2} with $\left(a_{1}, n\right)=\left(a_{2}, n\right)=1$,

$$
\begin{gathered}
\#\left\{x: 0<x<t, f(t) \equiv a_{1} \bmod n\right\} \sim \\
\#\left\{x: 0<x<t, f(x) \equiv a_{1} \bmod n\right\}
\end{gathered}
$$

as $t \rightarrow \infty$.
The integers n for which $\sigma_{i}(x)$ is WUD $(\bmod n)$ have been determined by Sliwa [6] for $i=1$, by Narkiewicz and Rayner [5] for $i=2$, and by Narkiewicz [2] for $i=3$. In the present paper the methods of [2] are further improved. For each odd integer $i>0$, there exist two finite sets of integers K_{1} and K_{2} such that σ_{i} has WUD $(\bmod n)$ if and only if either n is odd and not divisible by an element of K_{1} or n is even and not divisible by an element of K_{2}.

Calculations of the sets K_{1} and K_{2} for σ_{i} for all odd values of i from 5 to 199 have been carried out in the University of Liverpool Computer Laboratory. The results are tabulated at the end of this paper, and the earlier results of Sliwa ($i=1$) and Narkiewicz $(i=3)$ have been incorporated.

Observation 1. Within the range of the table, it can be seen that if i is prime and $2 i+1$ is composite, then K_{1} is empty, and that if i and $2 i+1$ are both prime, then $K_{1}=\{2 i+1\}$ for $i \equiv 3 \bmod 4$, and $K_{1}=\{6 i+3\}$ for $i \equiv 1 \bmod 4$.

Observation 2. Within the range of the table, if i is prime and $2 i+1$ is composite, then $K_{2}=\{6\}$, with the sole exception of $i=43$, where $K_{2}=\{6,2066\}$. Further, if i is prime and $2 i+1$ is prime, then $K_{2}=\{6,4 i+2\}$.

[^0]Observation 3. The upper bound of Lemma 4 below, $(2 i+1)^{2}$, for the set of primes involved in the calculations is much higher than necessary. A value of $(2 i+1)^{1.6}$ would be consistent with the values actually found. It would be possible to make calculations for higher values of i if this observed upper bound could be proved to hold in general.

Since this paper was originally submitted, Narkiewicz's book [4] has appeared. It describes the background and motivation for these calculations and refers to the original version of this paper in which the calculations were carried out for values of $i \leq 107$.

Narkiewicz records that Observation 1 concerning K_{1} has been shown to be true generally by E. Dobrowolski (see [4, p. 110, Theorem 6.12]). (See also Narkiewicz [2] for part of this result.)

In [4, p. 112, Problem V] Narkiewicz asks for a characterization of those odd integers i such that σ_{i} fails to have WUD $(\bmod n)$ if and only if 6 divides n. Since for composite i the set of moduli for which WUD fails is at least the union of the corresponding sets for the factors of i, one might first consider prime values for i. However, even for prime i, there seems to be no easily observed pattern of behavior of K_{2}. As in Observation 2 above, in the case in which i is prime and $2 i+1$ is composite, while K_{1} is always empty it is not always true that $K_{2}=\{6\}$, since σ_{43} is not WUD (mod 2066), although this seems to be a rare exception. Calculations for prime values of i are easier than for composite ones, and a search beyond the limits of the present tables, assuming a reduced upper bound as in Observation 3, shows that the next primes i for which K_{2} behaves in this way are

$$
\begin{aligned}
& i=467, \quad \text { where } K_{2}=\{6,24286\}, \\
& i=503, \quad \text { where } K_{2}=\{6,24146\}, \text { and } \\
& i=883, \quad \text { where } K_{2}=\{6,38854\} .
\end{aligned}
$$

It is worth noticing in connection with Observation 2 and Dobrowolski's result cited above from [4] that for $i=809$ we have $K_{2}=\{6,3338,38834\}$. Thus, although here i and $2 i+1$ are both prime, it is not always true that under these conditions $K_{2}=\{6,4 i+2\}, 809$ being the first exception.

Because of the reduced upper bound assumed here, these results for $i>200$ may possibly be incomplete in the sense that the sets K_{2} might be larger than stated (and therefore similar results might hold for smaller values of i), but this is extremely unlikely.

Observation 4. Ramanujan's τ function has WUD $(\bmod n)$ if and only if either n is odd and not divisible by 7 (Serre) or even and divisible neither by 6 nor 46 (Narkiewicz). (See [4, p. 89, Theorem 5.18].) Thus τ behaves with respect to weak uniform distribution in the same way as σ_{3} for odd n and in the same way as σ_{11} for even n.
2. Narkiewicz's Algorithm. For a fixed value of $i>2$, let

$$
V_{j}(x)=1+x^{i}+x^{2 i}+\cdots+x^{j i} .
$$

Thus, for a prime $p, \sigma_{i}\left(p^{j}\right)=V_{j}(p)$. Let

$$
R_{j}(n)=\left\{V_{j}(a) \bmod n: a \in \mathbf{Z},\left(a V_{j}(a), n\right)=1\right\}
$$

regarded as a subset of the multiplicative group $G(n)$ of residue classes prime to n. Let $\Lambda_{j}(n)$ be the subgroup of $G(n)$ generated by $R_{j}(n)$. Let $d(n)$ be the smallest $j \geq 1$ for which $R_{j}(n) \neq \varnothing$.

The following Lemmas 1-4 are special cases of results proved by Narkiewicz [2], [3].

Lemma 1. σ_{i} has $W U D(\bmod n)$ for $i>2$ if and only if $\Lambda_{d(n)}(n)=G(n)$.
Note that for odd $i>2, d(n)=1$ if n is odd, and $d(n)=2$ if n is even. Lemma 1 gives a means of calculating whether σ_{i} is WUD $(\bmod n)$ for any particular values of i and n.

LEMMA 2. Let $n=q_{1} \cdots q_{r}$, where q_{1}, \ldots, q_{r} are powers of distinct primes. Suppose for each $q_{s}, \Lambda_{j}\left(q_{s}\right)=G\left(q_{s}\right)$. Then $\Lambda_{j}(n) \neq G(n)$ if and only if
(i) there exist characters χ_{s} of $G\left(q_{s}\right)(s=1, \ldots, r)$ such that χ_{s} takes a constant value c_{s} (say) on $R_{j}\left(q_{s}\right)$;
(ii) $\prod_{s=1}^{r} c_{s}=1$; and
(iii) not all the characters χ_{s} are trivial.

Lemma 3. Let $q=p^{t}$, where p is an odd prime. Then there is a nontrivial character of $G(q)$ taking a constant value on $R_{j}(q)$ if and only if there is such a character of $G\left(p^{u}\right)$ taking a constant value on $R_{j}\left(p^{u}\right)$, where $u=\min \{t, 2\}$. For $p=2$ a similar result holds with $u=\min \{t, 3\}$.

Lemma 4. For any prime p, if there is a nontrivial character of $G\left(p^{t}\right)$ taking a constant value on $R_{j}(q)$, then $p<\left(e_{j}+1\right)^{2}$ where e_{j} is the degree of $V_{j}(x)$.

Remark. A slightly stronger result is due to Fomenko [1].
Let i now denote an odd integer greater than 1 . It is easily seen that if $\Lambda_{j}(n) \neq$ $G(n)$, then $\Lambda_{j}(m n) \neq G(m n)$ for any integer $m>1$. It follows that there are finite sets of integers K_{1} and K_{2} such that σ_{i} is WUD $(\bmod n)$ if and only if n is odd and not divisible by an element of K_{1} or n is even and not divisible by an element of K_{2}. The sets K_{1} and K_{2} can be found in the following way, as follows from Lemmas 1-4.

For $j=1,2$, let H_{j} be the set of primes p satisfying the inequality of Lemma 4 (in which $e_{1}=i$ and $e_{2}=2 i$).

Let $I_{j}=H_{j} \cup\left\{p^{2}: p \in H_{j}\right\} \cup\{8\}$, and let

$$
J_{j}=\left\{m \in I_{j}: \text { there exists a nontrivial character on } G(m) \text { constant on } R_{j}(m)\right\}
$$

including cases in which $\Lambda_{j}(m)$ is a proper subgroup of $G(m)$.
Then K_{j} is the set of all products r of elements of J_{j} (no element being taken more than once in each product) for which $\Lambda_{j}(r) \neq G(r)$.

Narkiewicz [2] has determined K_{1} and K_{2} for $i=3$. Because it may be necessary to examine primes p up to $(2 i+1)^{2}$ and to calculate values of $R_{2}\left(p^{2}\right)$ in $G\left(p^{2}\right)$, the calculations become difficult with increasing i. The Propositions in Section 3 below make it unnecessary to consider squares of most odd primes and reduce the number of primes which need to be included in the sets H_{j}, although the upper bounds are not altered.
3. Some Improvements. Throughout this paragraph, let $W(x)$ be a polynomial with integer coefficients, and let

$$
R(n)=\{W(a) \bmod n: a \in \mathbf{Z},(a W(a), n)=1\}
$$

regarded as a subset of $G(n)$.
For any prime q, let $\phi: G\left(q^{2}\right) \rightarrow G(q)$ be defined, for $x \in \mathbf{Z}$, by $\phi\left(x \bmod q^{2}\right)=$ $x \bmod q$, and let $\psi: G(q) \rightarrow G\left(q^{2}\right)$ be defined, for $x \in \mathbf{Z}$, by $\psi(x \bmod q)=$ $x^{q} \bmod q^{2}$. It is easy to see that ϕ and ψ are homomorphisms of abelian groups, that $\psi(\phi(z))=z$ for all $z \in G(q)$ (so that ϕ is an epimorphism and ψ is a monomorphism) and that $\phi\left(R\left(q^{2}\right)\right)=R(q)$.

Lemma 5. Let χ be any nontrivial character on $G(q)$ which is constant on $R(q)$. Then $\chi \circ \phi$ is a nontrivial character on $G\left(q^{2}\right)$ which is constant on $R\left(q^{2}\right)$.

Proof. Immediate.
Lemma 6. Let χ be any nontrivial character on $G\left(q^{2}\right)$ taking the constant value 1 on $R\left(q^{2}\right)$, and suppose that $\chi \circ \psi$ is the trivial character on $G(q)$. Then $R\left(q^{2}\right)$ and $R(q)$ have the same cardinal number.

Proof. First, $R\left(q^{2}\right) \subset \operatorname{ker} \chi$. Again, $\operatorname{im} \psi \subset \operatorname{ker} \chi$. Now $\operatorname{im} \psi$ is a subgroup of $G\left(q^{2}\right)$ of prime index q, so, since χ is not the trivial character, $\operatorname{im} \psi=\operatorname{ker} \chi$. Thus $R\left(q^{2}\right) \subset \operatorname{im} \psi$. The restriction of ϕ to $\operatorname{im} \psi$ is bijective, and $\phi\left(R\left(q^{2}\right)\right)=R(q)$. Hence the result.

Lemma 7. Suppose that the prime number q and polynomial $W(x)$ are such that $\psi(R(q)) \subset R\left(q^{2}\right)$. Let χ be any nontrivial character on $G\left(q^{2}\right)$ which is constant on $R\left(q^{2}\right)$. Then $\chi \circ \psi$ is a nontrivial character on $G(q)$ which is constant on $R(q)$.

Proof. Since $\psi(R(q)) \subset R\left(q^{2}\right), \chi \circ \psi$ is a character constant on $R(q)$, and it will be enough to show that it is nontrivial. If it is trivial, then $\chi(\psi(R(q)))=1$, and so the constant value of χ on $R\left(q^{2}\right)$ is 1 . The result now follows from Lemma 6.

Proposition 1. Let $W(x)=1+x^{i}$, where i is odd and not divisible by the odd prime q. Then there is a nontrivial character on $G\left(q^{2}\right)$ constant on $R\left(q^{2}\right)$ if and only if there is a nontrivial character on $G(q)$ constant on $R(q)$.

Proof. It is enough to show that Lemma 7 applies. Let $x \in \mathbf{Z}$ be such that $x \bmod q \neq 0$, and let $y_{\lambda}=x+\lambda q$ for $\lambda=0,1, \ldots, q-1$. Then

$$
\phi\left(\left(1+y_{\lambda}^{i}\right) \bmod q^{2}\right)=\left(1+x^{i}\right) \bmod q
$$

and $1+y_{\lambda}^{i} \equiv 1+y_{\mu}^{i} \bmod q^{2}$ if and only if $\lambda \equiv \mu \bmod q$. Thus $R\left(q^{2}\right)$ contains every element of $G\left(q^{2}\right)$ which is mapped into $R(q)$ by ϕ. Hence $\# R\left(q^{2}\right)=q \# R(q)$ and $\psi R(q) \subset R\left(q^{2}\right)$. Since ${ }^{\prime} \psi$ is a monomorphism and $q>2$, Lemmas 5 and 7 now give the result.

Proposition 2. Let $W(x)=1+x^{i}+x^{2 i}$, where i is odd and not divisible by the odd prime q. Then there is a nontrivial character on $G\left(q^{2}\right)$ constant on $R\left(q^{2}\right)$ if and only if there is a nontrivial character on $G(q)$ constant on $R(q)$.

Proof. For $q=3$, it is easily seen that such characters exist both on $R(q)$ and on $R\left(q^{2}\right)$. Now suppose $q \geq 5$. It is enough to show that if χ is a nontrivial character
on $G\left(q^{2}\right)$ taking a constant value a on $R\left(q^{2}\right)$, then $\chi \circ \psi$ is a nontrivial character on $G(q)$ taking a constant value on $R(q)$. Putting $x=q-1$, we see that $1 \in R\left(q^{2}\right)$, so that $a=\chi(1)=1$. Now let x be such that $x \bmod q \neq 0$, and put $y_{\lambda}=x+\lambda q$ for $\lambda=0,1, \ldots, q-1$. Clearly, $W\left(y_{\lambda}\right) \equiv W\left(y_{\mu}\right) \bmod q^{2}$ if and only if

$$
(\lambda-\mu) i x^{i-1}\left(1+2 x^{i}\right) \equiv 0 \bmod q .
$$

If x is such that $1+2 x^{i} \bmod q \neq 0$, it follows that q distinct elements of $R\left(q^{2}\right)$ are mapped onto $W(x) \bmod q$ by ϕ. On the other hand, if x is such that $1+2 x^{i} \bmod q=$ 0 , then exactly one element of $R\left(q^{2}\right)$ is mapped onto $W(x) \bmod q$ by ϕ. Note that in this case $W(x) \bmod q$ is uniquely determined. Thus, provided $R(q)$ has at least two elements, we can conclude that $\# R\left(q^{2}\right)>\# R(q)$. But q is a prime greater than 3 , and $1 \in R(q), 3 \in R(q)$. Lemma 6 now shows that $\chi \circ \phi$ is nontrivial. Now let $z \bmod q$ be any element of $R(q)$, so that $z=W(x) \bmod q$ for suitable $x \in \mathbf{Z}$. Then $z \bmod q^{2} \in R\left(q^{2}\right)$, and

$$
\chi(\phi(z \bmod q))=\chi\left(z^{q} \bmod q^{2}\right)=\left(\chi\left(z \bmod q^{2}\right)\right)^{q}=1^{q}=1 .
$$

Thus $\chi \circ \phi$ is constant on $R(q)$, and the proposition is proved.
Proposition 3. Let i be odd, and let q be a prime greater than 3, and let $W(x)$ be either $1+x^{i}$ or $1+x^{i}+x^{2 i}$. Suppose that there is a nontrivial character on $G(q)$ which is constant on $R(q)$. Then $(i, q-1) \neq 1$.

Proof. Suppose that $(i, q-1)=1$. Then $x \rightarrow x^{i}$ is an automorphism of $G(q)$.
For $W(x)=1+x^{i}$ we have $R(q)=\{2,3, \ldots, q-1\}$ and the only character constant on this set is trivial, so that the proposition holds in this case.

For $W(x)=1+x^{i}+x^{2 i}=\left(x^{i}+\alpha\right)^{2}+\beta$, where α and β are calculated in the finite field \mathbf{Z}_{q}, we have $1=W(-1) \in R(q)$, so that there will only be a nontrivial character constant on $R(q)$ if $R(q)$ generates a proper subgroup of $G(q)$. As x^{i} runs through all the nonzero elements of $\mathbf{Z}_{q}, x^{i}+\alpha$ runs through all except α (but including 0 and $-\alpha$), so that $\left(x^{i}+\alpha\right)^{2}$ runs through all the quadratic residues, and also takes the value 0 . Thus $\left(x^{i}+\alpha\right)^{2}+\beta$ takes $(q-1) / 2$ values in $G(q)$ if $-\beta$ is a quadratic residue, and $(q+1) / 2$ values otherwise. If $R(q)$ generates a proper subgroup of $G(q)$, this can only be the subgroup of order $(q-1) / 2$, that is, the group of quadratic residues. Thus, for every quadratic residue $r^{2}, r^{2}+\beta$ is also a quadratic residue. It follows that every element of $G(q)$ is a quadratic residue. This contradiction completes the proof of the proposition.
4. Results. With the help of Propositions 1,2 and 3, the algorithm of Section 2 can be simplified as follows.

For an odd integer $i>1$, let H_{1} (respectively, H_{2}) be the set consisting of the primes p of the form $1+\lambda r$ (where r is a nontrivial divisor of i and λ is an integer) for which $p<(i+1)^{2}$ (respectively, $p<(2 i+1)^{2}$), together with the prime divisors of i and their squares.

Let

$$
I_{1}=H_{1} \cup\left\{p^{2}: p \in H_{1} \text { is prime and there exists } q \in H_{1} \text { with } q \equiv 1(\bmod p)\right\}
$$

and let

$$
\begin{aligned}
I_{2}= & H_{2} \cup\left\{p^{2}: p \in H_{2} \text { is prime and there exists } q \in H_{2} \text { with } q \equiv 1(\bmod p)\right\} \\
& \cup\{2,4,8\} .
\end{aligned}
$$

As before, let J_{1} be the subset of I_{1} consisting of those elements m for which there is a nontrivial character modulo m constant on the set $R(m)$ of values of the polynomial $1+x^{i}$, and let J_{2} be calculated similarly from I_{2} using $1+x^{i}+x^{2 i}$. The sets K_{1} and K_{2} consist of the products r (say) of elements of J_{1} and J_{2}, respectively, with no repeated factor, for which $\Lambda_{1}(r) \neq G(r)$ (respectively, $\Lambda_{2}(r) \neq G(r)$), but omitting from K_{1} and K_{2} any r which is strictly divisible by another element already known to lie in K_{1} or K_{2}, respectively. It follows from the results of Section 3 that, with K_{1} and K_{2} found from these smaller sets I_{1} and I_{2}, σ_{i} fails to have WUD $(\bmod n)$ if and only if n is odd and divisible by an element of K_{1} or n is even and divisible by an element of K_{2}.

The results tabulated below include the cases $i=1$, due to Sliwa [6] and $i=3$ due to Narkiewicz [2].

Table of Results

The notation is as in Section 2. σ_{i} has WUD $(\bmod n)$ if and only if n is odd and not divisible by an element of K_{1} or n is even and not divisible by any element of K_{2}.

i	K_{1}	K_{2}
1	-	6
3	7	6
5	33	622
7	-	6
9	757	6146
11	23	646
13	-	6
15	73133	622122302
17	-	6
19	-	6
21	743	6
23	47	694
25	33	622
27	757109	6146
29	177	6118
31	-	6
33	723201	646134
35	3371	622142
37	-	6
39	779157	61874
41	249	6166
43	-	62066
45	7313357209	622122146302
47	-	6
49	-	6
51	7103307	6206614
53	321	6214
55	2333	62246
57	7229	6
59	-	6

61	-	6
63	74357127	6146
65	333931441	622262
67	-	6
69	747277417	694
71	-	6
73	-	6
75	73133151	62212230212022402
77	23	646
79	-	6
81	7571094893097	6146
83	167	6334
85	33	6223742
87	7177	6118
89	537	6358
91	-	6
93	7	6
95	33191	622382
97	-	6
99	723571992013971273	646134146
101	-	6
103	-	6
105	7313343716332321	622122142302
107	-	6
109	-	6
111	7223	6
113	681	6454
115	3347	62294
117	75779157	61461874
119	239	6478
121	23	646
123	7249	6166
125	33251	622502
127	-	6
129	7	62066
131	263	6526
133	-	6
135	7313357109209271	622122146302542
137	-	6
139	-	6
141	7283	6
143	23	646
145	33177649	622118
147	743	6
149	-	6
151	-	6
153	757103307919	6146206614122618387346
155	33311	622622
157	-	6
159	7321	6214

(continued)

161	47	694
163	-	6
165	7233133201331737	622461221343021322
167	-	6
169	-	6
171	757229	6146
173	1041	6694
175	3371	622142
177	7	6
179	359	6718
181	-	6
183	7367733	6734
185	33	622
187	23	646
189	7435710912711377201	61461514
191	383	6766
193	-	6
195	73133791573931441	6221222623021874
197	-	6
199	-	6

Department of Pure Mathematics
The University of Liverpool
P.O. Box 147

Liverpool, Great Britain GB-L69 3BX

1. O. M. FOMENKO, "The distribution of values of multiplicative functions with respect to a prime modulus," Zap. Nauchn. Sem. Leningrad. Otdel. Mat. Inst. Steklov. (LOMI), v. 93, 1980, pp. 218-224. (Russian)
2. W. NARKIEWICz, "Distribution of coefficients of Eisenstein series in residue classes," Acta Arith., v. 43, 1983, pp. 83-92.
3. W. Narkiewicz, "Euler's function and the sum of divisors," J. Reine Angew. Math., v. 323, 1981, pp. 200-212.
4. W. NARKIEWICZ, Uniform Distribution of Sequences of Integers in Residue Classes, Lecture Notes in Math., vol. 1087, Springer-Verlag, Berlin and New York, 1984.
5. W. Narkiewicz \& F. Rayner, "Distribution of values of $\sigma_{2}(n)$ in residue classes," Monatsh. Math., v. 94, 1982, pp. 133-141.
6. J. SliwA, "On distribution of values of $\sigma(n)$ in residue classes," Colloq. Math., v. 28, 1973, pp. 283-291.

[^0]: Received October 11, 1983; revised April 22, 1987.
 1980 Mathematics Subject Classification (1985 Revision). Primary 11B99; Secondary 11-04, 11A25, 11F30, 11N69, 11 Y 99.

